

UNDERSTANDING R AND U VALUES IN THERMAL INSULATION WHY U-VALUE MATTERS

When selecting the right insulation system for your construction project, understanding the difference between R and U values & knowing you have a choice to meet code using either value, is critical. These values are key indicators of thermal performance, but they measure different aspects of insulation effectiveness.

U-VALUE: A COMPREHENSIVE MEASURE.

TABLE C402.1.40PAQUE THERMAL ENVELOPE ASSEMBLY MAXIMUM REQUIREMENTS, U-FACTOR METHODA, b

CLIMATE ZONE	0 AND 1		2		3		4 EXCEPT MARINE		5 AND MARINE 4		6	
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
							Roo	fs				
Insulation entirely	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-
above roof deck	0.048	0.039	0.039	0.039	0.039	0.039	0.032	0.032	0.032	0.032	0.032	0.032
	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-
Metal buildings	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.031	0.029
						W	alls, abov	/e grade				
Metal building	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-
	0.079	0.079	0.079	0.079	0.079	0.052	0.052	0.050	0.050	0.050	0.050	0.050
Metal framed	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-	U-
	0.077	0.077	0.077	0.064	0.064	0.064	0.064	0.064	0.055	0.055	0.049	0.049

U-value measures the rate of heat transfer through a system, taking into account the entire assembly, including insulation, framing, and other materials used. Unlike the R-value, a lower U-value indicates better insulation performance.

The U-value is a superior metric for measuring insulation systems because it accounts for real-world factors such as thermal bridging, which can significantly impact the effectiveness of your insulation. (The table above C402.1.4, taken from IECC 2021, displays where/how the IECC communicates the U-Factor method's requirements for meeting the code)

R-VALUE: THE BASICS.

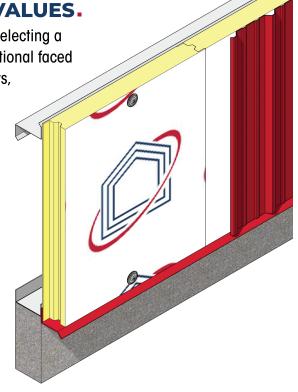
The R-value measures an insulation material's resistance to heat flow. The higher the R-value, the better the material insulates. This measurement is essential in determining how well an insulation material can keep heat from escaping or entering a building. For instance, if you have an R-30 insulation, it provides greater resistance to heat flow than an R-15 insulation. (The below Table C402.1.3, taken from IECC 2021, displays where/how the IECC communicates the R-Value method's requirements for meeting the code)

TABLE C402.1.30PAQUE THERMAL ENVELOPE INSULATION COMPONENT MINIMUM REQUIREMENTS, R-VALUE METHOD^a

CLIMATE ZONE	0 AND 1		2		3		4 EXCEPT MARINE		5 AND MARINE 4		6	
	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R	All other	Group R
'			,				Roofs	6	'			
Insulation entirely above roof deck	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-25ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci	R-30ci
Metal buildings ^b	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R11 LS	R-19 + R-11 LS	R-25 + R-11 LS	R-30 + R-11 LS						
	ı						Walls, above	grade		ı		
Metal building	R-13 + R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13 + R-13ci	R-13 + R-14ci	R-13 + R-14ci	R-13 + R-14ci	R-13 + R-14ci	R-13 + R-14ci
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R-13 + R-10ci	R-13 + R-10ci	R-13 + R-12.5ci	R-13 + R-12.5ci				

WHY U-VALUE MATTERS MORE.

While R-values are useful for understanding the properties of individual insulation materials, U-values provide a more comprehensive picture of a building's overall thermal performance. Here's why you should prioritize U-values when choosing an insulation system:


- Holistic Assessment: U-values consider the entire assembly, not just the insulation material. This includes potential heat
 loss through framing members and other components that can compromise insulation effectiveness.
- Real-World Performance: Construction projects often face issues like thermal bridging, where heat bypasses the
 insulation through conductive materials like metal girts and purlins. U-values account for these heat transfer paths,
 providing a more accurate representation of the building's thermal performance.
- Energy Efficiency: Lower U-values translate to better overall energy efficiency, reducing heating and cooling costs over the building's lifetime.

BEYOND ENVELOPE CONTINUOUS INSULATION: THE SUPERIOR CHOICE FOR MAXIMIZING U-VALUES.

When it comes to maximizing energy efficiency and thermal performance, selecting a comprehensive beyond envelope insulation system is essential. Unlike traditional faced fiberglass liner systems that often get compressed at girt and purlin supports, a beyond envelope continuous system, such as R-Seal®, ensures consistent insulation coverage without gaps or compression.

KEY BENEFITS.

- Eliminates Thermal Bridging: Continuous insulation covers the entire building envelope, minimizing thermal bridges and ensuring more uniform thermal protection.
- Consistent Performance: Our system maintains its integrity and insulation value across all areas, unlike faced fiberglass liners that can lose effectiveness when compressed.
- Enhanced Comfort and Savings: Better thermal performance means improved indoor comfort and significant savings on energy bills.

Investing in a continuous insulation system, with a focus on U-values, ensures your construction project achieves optimal thermal performance, energy efficiency, and long-term savings.